Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach

نویسندگان

  • Debashis Paul
  • Jie Peng
چکیده

In this paper, we consider the problem of estimating the covariance kernel and its eigenvalues and eigenfunctions from sparse, irregularly observed, noise corrupted and (possibly) correlated functional data. We present a method based on pre-smoothing of individual sample curves through an appropriate kernel. We show that the naive empirical covariance of the pre-smoothed sample curves gives highly biased estimator of the covariance kernel along its diagonal. We attend to this problem by estimating the diagonal and off-diagonal parts of the covariance kernel separately. We then present a practical and efficient method for choosing the bandwidth for the kernel by using an approximation to the leave-one-curve-out cross validation score. We prove that under standard regularity conditions on the covariance kernel and assuming i.i.d. samples, the risk of our estimator, under L loss, achieves the optimal nonparametric rate when the number of measurements per curve is bounded. We also show that even when the sample curves are correlated in such a way that the noiseless data has a separable covariance structure, the proposed method is still consistent and we quantify the role of this correlation in the risk of the estimator. AMS Subject Classification : 62G20, 62H25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Derivatives for Samples of Sparsely Observed Functions, with Application to On-line Auction Dynamics

It is often of interest to recover derivatives of a sample of random functions from sparse and noise-contaminated measurements, especially when the dynamics of underlying processes is of interest. We propose a novel approach based on estimating derivatives of eigenfunctions and expansions of random functions into their eigenfunctions to obtain a representation for derivatives. In combination wi...

متن کامل

Functional Modeling of Longitudinal Data

SUMMARY Functional data analysis provides an inherently nonparametric approach for the analysis of data which consist of samples of time courses or random trajectories. It is a relatively young field aiming at modeling and data exploration under very flexible model assumptions with no or few parametric components. Basic tools of functional data analysis are smoothing, functional principal compo...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

Functional principal component analysis of spatially correlated data

This paper focuses on the analysis of spatially correlated functional data. We propose a parametric model for spatial correlation and the between-curve correlation is modeled by correlating functional principal component scores of the functional data. Additionally, in the sparse observation framework, we propose a novel approach of spatial principal analysis by conditional expectation to explic...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008